应用超临界流体沉淀技术制备难溶性药物制剂的研究进展

杨刚, 冯年平, 邵群

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (7) : 526-532.

PDF(1014 KB)
PDF(1014 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (7) : 526-532. DOI: 10.11669/cpj.2016.07.002
综 述

应用超临界流体沉淀技术制备难溶性药物制剂的研究进展

  • 杨刚1, 冯年平1*, 邵群2
作者信息 +

Application of Supercritical Fluid Precipitation Technology for Preparation of Poorly Water-Soluble Drugs

  • YANG Gang1, FENG Nian-ping1*, SHAO Qun2
Author information +
文章历史 +

摘要

提高难溶性药物的溶出度和生物利用度是药剂学研究的重点和难点之一。超临界流体沉淀技术具有绿色、环保、可工业化等优势,因此,在难溶性药物新型给药系统领域具有广阔的应用前景。笔者结合近年国内外的研究报道,对超临界流体沉淀技术在难溶性药物制剂的制备研究方面的应用进行综述。

Abstract

To improve the dissolution and bioavailability of poorly water-soluble drugs have been being emphasis and difficulty in pharmaceutical research.Supercritical fluid precipitation(SFP) technology has an extensive prospect in new drug delivery systems of the poorly water-soluble drugs base on its advantages, such as green, friendliness to the environment and it is possible to achieve industrial-scale production. In this paper, related literatures were retrieved to summarize the application of SFP for preparation of poorly water-soluble drugs in recent years.

关键词

超临界流体沉淀技术 / 难溶性药物

Key words

supercritical fluid precipitation / poorly water-soluble drug

引用本文

导出引用
杨刚, 冯年平, 邵群. 应用超临界流体沉淀技术制备难溶性药物制剂的研究进展[J]. 中国药学杂志, 2016, 51(7): 526-532 https://doi.org/10.11669/cpj.2016.07.002
YANG Gang, FENG Nian-ping, SHAO Qun. Application of Supercritical Fluid Precipitation Technology for Preparation of Poorly Water-Soluble Drugs[J]. Chinese Pharmaceutical Journal, 2016, 51(7): 526-532 https://doi.org/10.11669/cpj.2016.07.002
中图分类号: R944   

参考文献

[1] COOPER E R. Nanoparticles:A personal experience for formulating poorly water soluble drugs[J]. J Controlled Release, 2010, 141(3):300-302.
[2] PU X M, KANG Y Q, CHEN A Z, et al. Preparation of poly-L-lactide microspheres using supercritical CO2 anti-solvent precipitation[J]. J Funct Mater (功能材料), 2007, 38(4):549-552.
[3] GUO H X, CHEN Q H, CHEN L, et al. Applications of supercritical fluid technology in preparation of drug-loaded microparticles[J]. Chin J Pharm(中国医药工业杂志), 2008, 29 (18):1567-1569.
[4] LI S M, LIU T, ZHAO L, et al. Application of supercritical fluid precipitation technology in pharmaceutical preparation[J]. Chin J Hosp Pharm(中国医院药学杂志),2008, 29 (18):1567-1569.
[5] GUO W Y. Application of supercritical fluid precipitation technology in drug delivery system [J]. Eval Anal Drug-Use Hosp China (中国医院用药评价与分析), 2012, 12(8):766-768.
[6] ZHANG W, ZHANG Z Y, ZHANG Z L, et al. Progress in preparation of solid dispersions using supercritical fluid process[J]. Anhui Med Pharm J(安徽医药), 2013, 17(6):903-905.
[7] LEEKE G A, LU T, BRIDSON R H, et al. Application of nano-particle coatings to carrier particles using an integrated fluidized bed supercritical fluid precipitation process[J]. J Supercrit Fluids, 2014, 91:7-14.
[8] PAZ E D, NGEL MART N, EVERY H, et al. Production of water-soluble quercetin formulations by antisolvent precipitation and supercritical drying[J]. J Supercrit Fluids, 2015, 104:281-290.
[9] TANDYA A, ZHUANG H Q, MAMMUCARI R, et al. Supercritical fluid micronization techniques for gastroresistant insulin formulations[J]. J Supercrit Fluids, 2016, 107:9-16.
[10] BIBA M, REGALADO E L, WU N, et al. Effect of particle size on the speed and resolution of chiral separations using supercritical fluid chromatography[J]. J Chromatogr A, 2014, 1363:250-256.
[11] BYRAPPA K, OHARA S, ADSCHIRI T. Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications[J]. Adv Drug Deliv Rev, 2008, 60(3):299-327.
[12] LIU J W, AMBERGG, DO-QUANG M. Numerical simulation of particle formation in the rapid expansion of supercritical solution process[J]. J Supercrit Fluids, 2014, 95:572-587.
[13] BASERI H, LOTFOLLAHIM N. Effects of expansion parameters on characteristics of gemfibrozil powder produced by rapid expansion of supercritical solution process[J]. Powder Technol, 2014, 253(2):744-750.
[14] DATEAA, PATRAVALE V B. Current strategies for engineering drug nanoparticles[J]. Curr Opin Colloid Interface Sci, 2004, 9(3):222-235.
[15] YAMAMOTO S, FURUSAWA T. Thermophysical flow simulations of rapid expansion of supercritical solutions (RESS)[J]. J Supercrit Fluids,2015, 97:192-201.
[16] JUNG J, PERRUT M. Particle design using supercritical fluids:Literature and patent survey[J]. J Supercrit Fluids, 2001, 20(3):179-219.
[17] BOLTEN D, TURK M. Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS)[J]. J Supercrit Fluids, 2012, 62:32-40.
[18] FATTAHI A, KARIMI-SABET J, KESHAVARZ A, et al. Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane[J]. J Supercrit Fluids, 2015, DOI:10. 1016/j. supflu. 2015. 05. 013.
[19] TURK M, BOLTEN D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS):tesults for naproxen[J]. J Supercrit Fluids, 2010, 55(2):778-785.
[20] MATSUYAMA K, MISHIMA K, UMEMOTO H, et al. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent[J]. Environ Sci Technol, 2001, 35(20):4149-4155.
[21] OVASKAINEN L, CHIGOME S, BIRKIN N A, et al. Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic depostion (RESS-ED)[J]. J Supercrit Fluids, 2014, 95:610-617.
[22] TRK M. Chapter 4-formation of organic particles using a supercritical fluid as solvent[J]. Supercrit Fluid Sci Technol, 2014, 6:57-75.
[23] HIENDRAWAN S, VERIANSYAH B, TJANDRAWINATA R R. Micronization of fenofibrate by rapid expansion of supercritical solution[J]. J Ind Eng Chem, 2014, 20(1):54-60.
[24] RATCHARAK O, SANE A. Surface coating with poly (trifluoroethyl methacrylate) through rapid expansion of supercritical CO2solutions[J]. J Supercrit Fluids, 2014, 89:106-112.
[25] HEZAVE A Z, AFTAB S, ESMAEILZADEH F. Micronization of ketoprofen by the rapid expansion of supercritical solution process[J]. J Aerosol Sci, 2010, 41(8):821-833.
[26] AKBARI Z, AMANLOU M, KARIMI-SABET J, et al. Characterization of carbamazepine-loaded solid lipid nanoparticles prepared by rapid expansion of supercritical solution[J]. Trop J Pharm Res, 2015, 13(12):1955-1961.
[27] KESHAVARZ A, KARIMI-SABET J, FATTAHI A, et al. Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS)[J]. J Supercrit Fluids, 2012, 63:169-179.
[28] MATSUYAMA K, MISHIMA K, HAYASHI K I, et al. Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent [J]. J Appl Polymer Sci, 2003, 89(3):742-752.
[29] RIBEIRO D S, THIES C, RICHARD J, et al. A supercritical fluid-based coating technology 2:Solubility considerations [J]. J Microencapsul, 2003, 20(1):97-109.
[30] OYASKAINEN L, CHIGOME S, BIRKIN N A, et al. Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic deposition (RESS-ED)[J]. J Supercrit Fluids, 2014, 95:610-617.
[31] TRK M, LIETZOW R. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution[J]. Aaps Pharmscitech, 2004, 5(4):36-45.
[32] BYRAPPA K, OHARA S, ADSCHIRI T. Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications[J]. Adv Drug Deliv Rev, 2008, 60(3):299-327.
[33] PESTIEAU A, KRIER F, LEBRUN P, et al. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation[J]. Int J Pharm, 2015, 485(1):295-305.
[34] FAILE M, DEODATO D, RODRIGUEZ-ROJO S, et al. Production of new hybrid systems for drug delivery by PGSS (particles from gas saturated solutions) process[J]. J Supercrit Fluids, 2013, 81:226-235.
[35] PERINELLI D R, BONACUCINA G, CESPI M, et al. Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process[J]. Int J Pharm, 2014, 468(1):250-257.
[36] PAZ E, MARTIN , COCERO M J. Formulation of β-carotene with soybean lecithin by PGSS (particles from gas saturated solutions)-drying[J]. J Supercrit Fluids, 2012, 72:125-133.
[37] REVERCHON E, DELLA PORTA G. Micronization of antibiotics by supercritical assisted atomization[J]. J Supercrit Fluids, 2003, 26(3):243-252.
[38] LABUSCHAGNE P W, ADAMI R, LIPAROTI S, et al. Preparation of rifampicin/poly (d, l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique[J]. J Supercrit Fluids, 2014, 95:106-117.
[39] AQUINO R P, AURIEMMA G, MENCHERINI T, et al. Design and production of gentamicin/dextransmicroparticles by supercritical assisted atomisation for the treatment of wound bacterial infections[J]. Int J Pharm, 2013, 440(2):188-194.
[40] REVERCHON E, ANTONACCI A. Drug-polymer microparticles produced by supercritical assisted atomization[J]. Biotechnol Bioeng, 2007, 97(6):1626-1637.
[41] SHIRAIWA M, ZUEND A, BERTRAM A K, et al. Gas-particle partitioning of atmospheric aerosols:Interplay of physical state, non-ideal mixing and morphology[J]. Phys Chem Chem Phys, 2013, 15(27):11441-11453.
[42] VARONA S, MARTN , COCERO M J. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions[J]. Ind Eng Che Res, 2011, 50(4):2088-2097.
[43] YUN J H, LEE S M, PARK J N, et al. Particle formation of lecithin process with particles from gas-saturated solutions using supercritical carbon dioxide[J]. Apcbee Procedia, 2012, 2(5):22-26.
[44] LIPAROTI S, ADAMI R, CAPUTO G, et al. Supercritical assisted atomization:Polyvinylpyrrolidone as carrier for drugs with poor solubility in water[J]. J Chem, 2013, 2013(22):1-5.
[45] ADAMI R, LIPAROTI S, REVERCHON E. A new supercritical assisted atomization configuration, for the micronization of thermolabilecompounds[J]. Chem Eng J, 2011, 173(1):55-61.
[46] CHO W, KIM M S, JUNG M S, et al. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes[J]. Int J Pharm, 2015, 478(1):288-296.
[47] MCADAMS D H, PRODUCTION. Optimization and Characterization of Pharmaceutical and Excipient Powders Produced by Carbon Dioxide-Assisted Nebulization with a Bubble Dryer (CAN-BD)[D]. Denver:University of Colorado at Boulder, 2011.
[48] SALA S, CRDOBA A, MORENO-CALVO E, et al. Crystallization of microparticulate pure polymorphs of active pharmaceutical ingredients using CO2-expanded solvents[J]. Cryst Growth Des, 2012, 12(4):1717-1726.
[49] JUNG J, PERRUT M. Particle design using supercritical fluids:Literature and patent survey[J]. J Supercrit Fluids, 2001, 20(3):179-219.
[50] LI S, LIU Y, LIU T, et al. Development and in-vivo assessment of the bioavailability of oridonin solid dispersions by the gas anti-solvent technique[J]. Int J Pharm, 2011, 411(1):172-177.
[51] PHOTHIPANYAKUN S, SUTTIKORNCHAI S, CHAROENCHAITRAKOOL M. Dissolution rate enhancement of sulfamethoxazole using the gas anti-solvent (GAS) process[J]. Powder Technol, 2013, 250:84-90.
[52] UZUN  N, SIPAHIGIL O, DINER S. Coprecipitation of cefuroxime axetil-PVP composite microparticles by batch supercritical antisolventprocess[J]. J Supercrit Fluids, 2011, 55(3):1059-1069.
[53] ZABIHI F, YANG M, LENG Y, et al. PLGA-HPMC Nanoparticles prepared by a modified supercritical anti-solvent technique for the controlled release of insulin[J]. J Supercrit Fluids, 2015, 99:15-22.
[54] BRIDSON R H, SANTOS R C D, AL-DURI B, et al. The preparation of liposomes using compressed carbon dioxide:Strategies, important considerations and comparison with conventional techniques[J]. J Pharm Pharmacol, 2006, 58(6):775-785.
[55] TSERVISTAS M, LEVYMS, LO-YIMMYA, et al. The formation of plasmid DNA loaded pharmaceutical powders using supercritical fluid technology[J]. Biotechnol Bioeng, 2001, 72(1):12-18.
[56] CHEN F, YIN G, LIAO X, et al. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids[J]. J Mater Sci(Mater Med), 2013, 24(7):1693-1705.
[57] YANG G, ZHAO Y, FENG N P, et al. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids[J]. Asian J Pharm Sci, 2015, 10(3):194-202.
[58] CORRIGAN O I, CREAN A M. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying[J]. Int J Pharm, 2002, 245(1):75-82.
[59] IMCHALEE R, CHAROENCHAITRAKOOL M. Gas anti-solvent processing of a new sulfamethoxazole-l-malic acid cocrystal[J]. J Ind Eng Chem, 2014, 25:12-15.
[60] MARTN A, MATTEA F, GUTIRREZ L, et al. Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process[J]. J Supercrit Fluids, 2007, 41(1):138-147.
[61] ANWAR M, AHMAD I, WARSI M H, et al. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process[J]. Eur J Pharm Biopharm, 2015, 96:162-172.
[62] SUI X, WEI W, YANG L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process[J]. Int J Pharm, 2012, 423(2):471-479.
[63] ZHAO C, WANG L, ZU Y, et al. Micronization of Ginkgo biloba extract using supercritical antisolventprocess[J]. Powder Technol, 2011, 209(1):73-80.
[64] WIDJOJOKUSUMO E, VERIANSYAH B, YOUN Y S, et al. Co-precipitation of loperamide hydrochloride and polyethylene glycol using aerosol solvent extraction system[J]. Korean J Chem Eng, 2013, 30(9):1797-1803.
[65] YOUN Y S, OH J H, AHN K H, et al. Dissolution rate improvement of valsartan by low temperature recrystallization in compressed CO2:Prevention of excessive agglomeration[J]. J Supercrit Fluids, 2011, 59:117-123.
[66] MURILLO-CREMAES N, SUBRA-PATERNAULT P, SAURINA J, et al. Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior[J]. Colloid Polymer Sci, 2014, 292(10):2475-2484.
[67] TABERNERO A, DEL VALLE E M M, GALN M A. Precipitation of tretinoin and acetaminophen with solution enhanced dispersion by supercritical fluids (SEDS). Role of phase equilibria to optimize particle diameter[J]. Powder Technol, 2012, 217(2):177-188.
[68] YANG G, ZHAO Y P, ZHANG Y T. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt:Preparation bysupercritical fluid technology and evaluation in vitro and in vivo [J]. Int J Nanomed, 2015,10:6633-6644.
[69] JIN H, LI S, HU D, et al. Preparation of PLA-PEG nanoparticles by the solution enhanced dispersion with enhanced mass transfer using ultrasound in supercritical CO2[J]. Powder Technol, 2012, 227(9):17-23.

基金

教育部博士点基金资助项目(20123107110005)
PDF(1014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/